Home
Experiences
Accomplishments
Projects
Publications
Light
Dark
Automatic
Source Themes
Scalable and Accurate Subsequence Transform for Time Series Classification
Time series classification using phase-independent subsequences called shapelets is one of the best approaches in the state of the art. …
Michael F. MBOUOPDA
,
Engelbert MEPHU NGUIFO
PDF
Cite
Code
DOI
Experimental Study of Time Series Forecasting Methods for Groundwater Level Prediction
Groundwater level prediction is an applied time series forecasting task with important social impacts to optimize water management as well as preventing some natural disasters: for instance, floods or severe droughts. Machine learning methods have been reported in the literature to achieve this task, but they are only focused on the forecast of the groundwater level at a single location. A global forecasting method aims at exploiting the groundwater level time series from a wide range of locations to produce predictions at a single place or at several places at a time…
Michael F. MBOUOPDA
,
Thomas Guyet
,
Nicolas Labroche
,
Abel Henriot
PDF
Cite
Code
Dataset
Source Document
DOI
Explainable classification of astronomical uncertain time series
Exploring the expansion history of the universe, understanding its evolutionary stages, and predicting its future evolution are …
Michael F. MBOUOPDA
,
Emille EO Ishida
,
Engelbert MEPHU NGUIFO
,
Emmanuel Gangler
PDF
Cite
Code
DOI
Etude de la prédiction du niveau de la nappe phréatique à l'aide de modèles neuronaux convolutif, récurrent et résiduel
La prévision du niveau des nappes phréatiques, ou niveau piézométrique ou encore charge hydraulique est une tâche aux enjeux …
Michael F. MBOUOPDA
PDF
Cite
Source Document
Uncertain Time Series Classification
Time series analysis has gained a lot of interest during the last decade with diverse applications in a large range of domains such as …
Michael F. MBOUOPDA
,
Engelbert MEPHU NGUIFO
PDF
Cite
DOI
Scalable and Accurate Subsequence Transform for Time Series Classification
Time series classification using phase-independent subsequences called shapelets is one of the best approaches in the state of the art. …
Michael F. MBOUOPDA
,
Engelbert MEPHU NGUIFO
PDF
Cite
Slides
Video
Source Document
Uncertain Time Series Classification with Shapelet Transform
Time series classification is a task that aims at classifying chronological data. It is used in a diverse range of domains such as …
Michael F. MBOUOPDA
,
Engelbert MEPHU NGUIFO
PDF
Cite
DOI
Classification of Uncertain Time Series by Propagating Uncertainty in Shapelet Transform
Time series classification is a task that aims at classifying chronological data. It is used in a diverse range of domains such as …
Michael F. MBOUOPDA
,
Engelbert MEPHU NGUIFO
PDF
Cite
Source Document
Classification des Séries Temporelles Incertaines par Transformation Shapelet
La classification des séries temporelles est une tâche qui consiste à classifier les données chronologiques. Elle est utilisée dans …
Michael F. MBOUOPDA
,
Engelbert MEPHU NGUIFO
PDF
Cite
A Word Representation to Improve Named Entity Recognition in Low-resource Languages
Named Entity Recognition (NER) is a fundamental task in many NLP applications that seek to identify and classify expressions such as …
Michael F. MBOUOPDA
,
Paulin Melatagia Yonta
Cite
DOI
»
Cite
×