Uncertain Time Series Classification

Abstract

Time series analysis has gained a lot of interest during the last decade with diverse applications in a large range of domains such as medicine, physic, and industry. The field of time series classification has been particularly active recently with the development of more and more efficient methods. However, the existing methods assume that the input time series is free of uncertainty. However, there are applications in which uncertainty is so important that it can not be neglected. This project aims to build efficient, robust, and interpretable classification methods for uncertain time series.

Publication
In International Joint Conferences on Artificial Intelligence Organization
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.

Supplementary notes can be added here, including code and math.

Michael F. MBOUOPDA
Michael F. MBOUOPDA
Machine Learning Researcher

Currently, my main research interests are anomaly detection and explainable artificial intelligence.