Classification of Uncertain Time Series by Propagating Uncertainty in Shapelet Transform

Abstract

Time series classification is a task that aims at classifying chronological data. It is used in a diverse range of domains such as meteorology, medicine and physics. In the last decade, many algorithms have been built to perform this task with very appreciable accuracy. However, the uncertainty in data is not explicitly taken into account by these methods. Using uncertainty propagation techniques, we propose a new uncertain dissimilarity measure based on euclidean distance. We also show how to classify uncertain time series using the proposed dissimilarity measure and shapelet transform, one of the best time series classification methods. An experimental assessment of our contribution is done on the well known UCR dataset.

Publication
In ECML/PKDD Tutorial and Workshop on Uncertainty in Machine Learning (ECMLPKDDW)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.

Supplementary notes can be added here, including code and math.

Michael F. MBOUOPDA
Michael F. MBOUOPDA
Machine Learning Researcher

Currently, my main research interests are anomaly detection and explainable artificial intelligence.